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Abstract 

Background:  Canine morbillivirus (canine distemper virus, CDV) is a member of the Paramyxoviridae family. Canine 
distemper is a serious viral disease that affects many mammalian species, including members of the Mustelidae fam-
ily. These animals have an elusive nature, which makes related virological studies extremely challenging. There is a 
significant knowledge gap about the evolution of their viruses and about the possible effects of these viruses to the 
population dynamics of the host animals. Spleen and lung tissue samples of 170 road-killed mustelids belonging to 
six species were collected between 1997 and 2022 throughout Hungary and tested for CDV with real-time RT-PCR.

Results:  Three species were positive for viral RNA, 2 out of 64 Steppe polecats (Mustela eversmanii), 1 out of 36 
European polecats (Mustela putorius) and 2 out of 36 stone martens (Martes foina); all 18 pine martens (Martes martes), 
10 least weasels (Mustela nivalis) and 6 stoats (Mustela erminea) tested negative. The complete CDV genome was 
sequenced in five samples using pan-genotype CDV-specific, amplicon-based Nanopore sequencing. Based on the 
phylogenetic analysis, all five viral sequences were grouped to the Europe/South America 1 lineage and the distribu-
tion of one sequence among trees indicated recombination of the Hemagglutinin gene. We verified the recombina-
tion with SimPlot analysis.

Conclusions:  This paper provides the first CDV genome sequences from Steppe polecats and additional complete 
genomes from European polecats and stone martens. The infected specimens of various species originated from 
distinct parts of the country over a long time, indicating a wide circulation of CDV among mustelids throughout 
Hungary. Considering the high virulence of CDV and the presence of the virus in these animals, we highlight the 
importance of conservation efforts for wild mustelids. In addition, we emphasize the importance of full genomic 
data acquisition and analysis to better understand the evolution of the virus. Since CDV is prone to recombination, 
specific genomic segment analyses may provide less representative evolutionary traits than using complete genome 
sequences.
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Background
Canine morbillivirus (canine distemper virus, CDV) 
is a single-stranded, negative-sense RNA virus that 
belongs to the Morbillivirus genus of the Paramyxo-
viridae family [1–3]. The length of the CDV genome 
is 15,690 nucleotides, and the genome encodes six 
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structural proteins; two glycoproteins: hemagglutinin 
(H) and fusion (F) proteins, one envelope-associated 
matrix (M) protein, one nucleocapsid (N) protein, and 
two transcriptase-associated proteins: phosphoprotein 
(P) and a large polymerase (L) protein [3, 4]. Several 
distinct genotypes are known and classified accord-
ing to different hosts and geographical areas based on 
nucleotide sequence analysis of the H gene [3, 5–8]. In 
Hungary, three different CDV genotypes (Europe, Arc-
tic-like and European wildlife lineages) was described 
so far based on the H gene nucleotide sequences. In 
addition to dogs, CDV infection was detected in other 
carnivores, including the red fox and raccoon (Procyon 
lotor), Eurasian otter and ferret (Mustela furo) [9–13]. 
These genotypes have significantly different history, 
geographic distribution and known host range. Nota-
bly, all these CDV is a significant viral pathogen among 
wild and domesticated animals with a high mortality 
rate [14, 15]. The virus is primarily transmitted through 
bodily fluids, e.g., saliva, respiratory droplets, urine, 
and feces, including transmission due to direct con-
tact [16]. Cross-species transmission occurs frequently, 
which may lead to conservation problems regarding 
vulnerable species [17].

Fatal CDV outbreaks are known to occur in wild pop-
ulations of endangered species. In Africa, CDV caused 
outbreaks in a diverse range of wild mammals such as 
the lion (Panthera leo), African wild dog (Lycaon pictus) 
and Ethiopian wolf (Canis simensis) [14, 18–20]. In Asia, 
the virus poses a serious threat to the vulnerable Giant 
panda (Ailuropoda melanoleuca) and the endangered 
Amur tiger (Panthera tigris altaica) [21–23]. Addition-
ally, in Europe, CDV infection was also reported in one of 
the most endangered felid species, the Iberian lynx (Lynx 
pardinus) [24]. In the case of mustelids, CDV infection 
was previously associated with a high mortality rate 
approaching 100% [25]. The most remarkable CDV out-
break in black-footed ferret (Mustela nigripes) population 
occurred in Wyoming, Western USA, seriously affecting 
a captive breeding program and leading to the extirpation 
of the species from the wild [26, 27]. A recent report from 
Spain investigated the CDV seroprevalence trends in 
association to the population size of the Critically Endan-
gered European mink (Mustela lutreola). They found 
that CDV seroprevalence is an indicator for the popula-
tion trend of these animals, supporting our hypothesis 
that CDV may be an important wildlife disease [28]. In 
Europe, CDV has been reported among multiple species 
to date, including the stone marten (Martes foina), pine 
marten (Martes martes), Eurasian badger (Meles meles), 
Eurasian otter (Lutra lutra), European mink (Mustela 
lutreola), European polecat (Mustela putorius) and the 
American mink (Mustela vison) [13, 29–34].

In Hungary, the Steppe polecat (Mustela eversmanii), 
least weasel (Mustela nivalis), stoat (Mustela erminea) 
and pine marten are protected species, the European 
polecat is periodically considered, and the stone marten 
is a legally hunted species throughout the year. The stone 
marten and the European polecat are common, habi-
tat generalists [35, 36]; the least weasel and pine marten 
are relatively common, whereas the stoat and the Steppe 
polecat are rare species [37–39]. These mustelids belong 
to small mammal consumers and omnivorous trophic 
guilds. Frequent coexistence of up to 5–6 carnivore spe-
cies and known killings among smaller related species 
[40] indicate interspecific encounters. These direct con-
tacts may result in cross-infection.

Next generation sequencing (NGS) technologies are 
increasingly being used to detect and characterize path-
ogens in wildlife [41–44]. MinION (Oxford Nanopore 
Technologies, Oxford, UK) has been used in many areas 
of virology, for instance, metagenomics or sequencing 
of complete genomes [45–48]. Amplicon-based NGS 
sequencing of specific pathogens is a method for rapid 
detection and genomic characterization of target patho-
gens which may yield high-coverage genomic sequence 
information [12, 49–52]. With the aid of this technology, 
we can gain more knowledge about the complete viral 
genomes, like detection of recombination events.

Detection and investigation of viral diseases are impor-
tant factors for conserving protected and rare species; 
however, the elusive nature of several mustelids ham-
pers our understanding of their viruses. Monitoring 
road-killed animals is a general practice for population 
genetic studies on rare species [53, 54], but it also gives 
a good opportunity to get data about pathogens of these 
animals [13, 55]. Herein we present the results of a post-
mortem retrospective surveillance study to detect CDV 
RNA among road-killed mustelids and perform complete 
genomic sequencing, phylogenetic and recombination 
analyses on these virus sequences.

Results
PCR screening
Canine morbillivirus RNA was detected in three out of 
the six investigated species: 2 positives out of 64 Steppe 
polecats, 1 positive out of 36 European polecats and 2 
positives out of 36 stone martens. Samples screened from 
18 pine martens, 10 least weasels and 6 stoats were nega-
tive. The European polecat detected in 2019 and the stone 
marten in 2020 originated from Western Hungary, both 
Steppe polecats (collected in 2018 and 2021) originated 
in Eastern Hungary, and the stone marten (sampled in 
2017) was collected in Southern Hungary (Table 1). Two 
CDV test positive animals (a stone marten and a Steppe 
polecat) showed signs of bites on their bodies, which 
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indicates combat with another carnivore (Table  1). As 
the sample collection efforts were not evenly distributed 
during the study period, CDV prevalence could not be 
estimated.

Sequencing and phylogenetic analysis
Complete genomes were successfully retrieved from all 
positive samples. Sequences were deposited in GenBank 
(accession numbers OP209185-OP209189). Based on 
the phylogenetic analysis of complete genomes, all these 
sequences belong to the Europe/South America 1 line-
age (Fig. 1). The Hemagglutinin (H) gene sequence-based 
analysis confirmed this result (Fig. 2).

Sequences are dispersed among two clusters within the 
Europe/South America 1 lineage, and both clusters are 
composed of sequences from Hungary. Based on com-
plete genomes (Fig.  1), one cluster contains only mus-
telid sequences, whereas one Steppe polecat sample was 
grouped with red fox (Vulpes vulpes) samples in a sepa-
rate clade. Based on the H gene phylogenetic tree, both 
Steppe polecat samples (OP209186) grouped with red fox 
samples on a distant clade (Fig. 2). The secondary analysis 
with RAxML plugin for Geneious supported the primary 
phylogenetic patter of the sequences, all main lineages 
and the novel sequences were positioned similarly (Sup-
plementary material; Supplementary Figs. 2 and 3).

The distinct clustering pattern of OP209185 from a 
Steppe polecat on the phylogenetic trees (Fig.  1 and 2) 
indicates a recombination event in association with the 
Hemagglutinin genomic region. The SimPlot analysis 
confirmed the recombination of the Hemagglutinin gene 
with a closely related, Europe/South America 1 lineage 

strain. Also, it confirmed multiple additional recombina-
tion points in the genome (Fig. 3). The secondary analysis 
with DualBrothers plugin in Geneious also detected mul-
tiple recombination points throughout the genome with 
the same crossing-points (Supplementary material; Sup-
plementary Fig. 4).

Discussion
We present the circulation of CDV throughout the coun-
try over several years, supporting the endemic nature 
of this virus among mustelids. An important finding of 
the current study is the detection of CDV in wild-living 
Steppe polecats. It is a rare and protected mammal spe-
cies of our region and by using retrospective virus sur-
veillance methods (i.e. without disturbance and invasive 
sampling of the animals), we were able to indicate the 
role of these animals in CDV transmission. Steppe pole-
cat was already a suspected host for CDV [56]; however, 
due to its rareness and elusive nature, only a few molecu-
lar biological investigations have been performed on this 
species without presenting viral genomic data [30]. In 
the current study we present the first two complete CDV 
genomes from the Steppe polecat, enriching the diversity 
of available CDV genomes. By revealing the presence of 
a recombinant CDV strain in these animals we demon-
strated the importance of generating complete genomic 
data. This approach may ultimately lead to better under-
standing CDV evolution, since partial genome fragments 
are not suitable to understand the impact of recom-
bination events in CDV evolution or the role of coding 
regions other than H. Furthermore, the presence of CDV 
was confirmed in two additional species in this study. The 

Table 1  Summary data of CDV-positive mustelids collected in Hungary

Species stone marten Steppe polecat European polecat stone marten Steppe polecat

Date of finding 2007 07.12.2018 26.03.2019 01.12.2020 02.05.2021

Tissue spleen spleen lung spleen spleen

Age category juvenile adult adult juvenile adult

Sex female male female male male

Cause of death road-killed road-killed road-killed road-killed road-killed

County
(settlement)

Somogy Békés (Battonya) Vas
(Bozsok)

Vas (Felsőjánosfa) Békés (Nagybánhegyes)

Body condition poor good average average good

Other details - - - bite on the body bite on the body

RT-PCR Ct value 34.60 38.16 25.61 24.11 46.56

Number of multiplex PCR 
cycles during sequencing 
protocol

35 35 27 26 35

Mean sequencing 
coverage of the targeted 
region (reads)

11,994.3 3587 17,555.3 2280 102.4

Accession Number OP209188 OP209186 OP209187 OP209189 OP209185
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European polecat is also at risk of infection by CDV; for 
instance, the virus was detected with RT-PCR (qPCR) 
from the Asturias region of Atlantic Spain in 2021 [57]. 
The stone marten is a well-known host of CDV, and in 
recent decades, many cases have been detected in nearby 
countries including such as Austria, the Czech Republic, 
Germany, Switzerland and Italy [29–31, 58–61].

According to our findings and previous literature data, 
CDV is present in 4 out of the 8 species of the Mustelidae 
family in our region [9, 10, 13, 40]. Considering the rel-
evance of these animals in conservation biology, vaccina-
tion in wildlife rescue centers may be an important tool 
in the conservation of rare and protected mustelids [62]. 
For instance, the black-footed ferret, which population 
has almost been extinct due to CDV infection, is a close 
relative of the Steppe polecat. The vaccination of black-
footed ferret × Steppe polecat hybrids was reported as 
surrogates for endangered black-footed ferrets [63, 64]. 
In Europe, CDV was detected in Spain in four carnivore 
species collected in 2020–2021, including the Eurasian 
badger, pine marten, European polecat and the red fox 
[57]. In the Czech Republic, CDV was detected between 
2012–2020 in the red fox, stone marten, raccoon, pine 

marten and the European badger [59]. Similar outbreaks 
were observed among red foxes across Europe due to 
this strain [12, 60, 65–67]. Europe/South America 1 lin-
eage was also detected in many other species such as 
Iberian wolves (Canis lupus signatus), an Asian marmot 
(Marmota caudata) kept in a zoo, a stone marten, pine 
marten, Eurasian lynx (Lynx lynx), Iberian lynx and a 
domestic dog [24, 31, 42, 68–70].

For effective transmission of CDV, close contact among 
infected and susceptible animals is necessary. Bites on 
two positive animals (stone marten and Steppe polecat) 
were observed as a direct indication of contact with other 
carnivores. Aggressive intra- and interspecific behavior 
are relatively common in the mustelid species, and com-
petition for territory [71], food, or mating partner can 
effectively facilitate the spread of the disease. Nonethe-
less, according to published literature, skin contact, feces 
or urine are less important means of transmission [22, 
51, 52]. However, the primary method of transmission in 
CDV infection is theorized to be via the respiratory tract 
droplets [72, 73], which may have relevance under fight-
ing conditions. More studies and observational data are 

Fig. 1  A Maximum likelihood phylogenetic tree based on 221 CDV complete genomes. Phocine distemper virus (PDV) (GenBank accession 
number: KY629928) was used as an outgroup to root the phylogenetic tree. The Europe/South America 1 lineage of interest is highlighted in blue. 
B Expanded portion of Europe/S Am 1 lineage. Dots represent sequences obtained in this study
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necessary to better understand the natural transmission 
and circulation patterns of CDV.

Based on literature data, the Europe/South America 
1 lineage of CDV, which circulates among mustelids 
throughout Hungary, is also present in surrounding 
countries [31, 59, 60, 66, 67]. Similar to most of the CDV 
surveillance studies, H-gene phylogeny was a useful tool 
for lineage categorization. However as a major limita-
tion, H-gene based analysis is not adequate to reveal 
genome-scale recombination patterns and understand 
fine-scale evolutionary patterns. Based on literature data 
these viruses are prone to recombine in several genomic 
regions, most frequently in the H gene [74, 75]. We sup-
port this with our observation and presentation of mul-
tiple recombination points in our recombinant CDV 
strain. More complete genomic sequence data in the 
future can reveal a more accurate evolutionary scenario 

for our sequence. In addition the dispersive pattern 
among these two phylogenetic clades, composed by dif-
ferent CDV strains from other animal species raises the 
possibility for cross-species transmission events. This 
was already known from literature data as an important 
feature of CDV transmission [76, 77].

A limitation of our study is the lack of autopsy or his-
tology data to better understand the pathogenicity of 
the CDV infection in these animals. Further studies are 
needed to discuss the pathogenic nature of these dif-
ferent CDV strains. However, our study highlighted the 
importance of genome-scale monitoring of CDV evo-
lution, which may serve as a first step to understand 
genomic evolution in relation to pathogenesis. In addi-
tion to these, our study demonstrated that road-killed 
carcasses are a valuable source of CDV surveillance in 
wildlife species.

Fig. 2  A Maximum Likelihood phylogenetic tree based on 969 complete Hemagglutinin (H) nucleotide sequences. Phocine distemper virus (PDV) 
(GenBank accession number: KY629928) was used as an outgroup to root the phylogenetic tree. The Europe/South America 1 lineage of interest is 
highlighted in blue. B Expanded portion of Europe/S Am 1 lineage. Dots represent sequences obtained in this study
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Conclusion
Understanding the long-term presence of CDV in free-
living mammals is of great importance, especially among 
mustelids, which are particularly sensitive to CDV. As 
we demonstrated in our study, retrospective sample sur-
veillance coupled with complete genomic sequencing 
are useful tools to understand the host range of CDV 
and describe a more detailed evolutionary picture of the 
virus. Amplicon-based NGS methods are ideal tools to 
gain complete genomes even from organ samples stored 
over a long time and most importantly from samples with 
low viral titers.

Methods
Sample collection
Road-killed mustelids (n = 170) were collected in Hun-
gary between 1997 and 2022 by the staff of National Park 
Directorates and volunteers and stored at -20  °C until 
processing. Tissue samples from spleen and lung via gen-
eral dissection procedures were collected from the Steppe 
polecat (n = 64), European polecat (n = 36), stone mar-
ten (n = 36), pine marten (n = 18), least weasel (n = 10) 
and stoat (n = 6) [see Supplementary material; Table  1, 
Fig.  1]. The post-mortem examination was carried out 

by the Carnivore Ecology Research Group at the Kapos-
vár Campus of the Hungarian University of Agriculture 
and Life Sciences [78] and by the Hungarian Natural His-
tory Museum, Budapest [36, 37, 79]. We scored the body 
condition based on fat deposit over flanks between 1 
(poor), 2 (average) and 3 (good) [80]. Tissue samples were 
stored at -20 °C in the Kaposvár Campus. A few months 
before nucleic acid extraction, they were deposited in the 
National Laboratory of Virology at -80 °C.

Research and sample collection permits were issued 
by the relevant authorities to the Kaposvár Campus (SO-
04Z/TO/392–2/2019) and to the Hungarian Natural His-
tory Museum (14/6156/7/2011, OKTF-KP/6903–21/2015, 
PE-KTF/736–6/2017, PE-KTFO/329–16/2019, PE-
KTFO/1568–18/2020, PE-KTFO/1403–3/2022).

Nucleic acid extraction and PCR reactions
For most animals, nucleic acids were extracted from the 
spleen, but lung was substituted when spleen was not 
available. Tissue samples were homogenized in 500  μl 
phosphate buffered saline (PBS), using a TissueLyser LT 
device (Qiagen, Hilden, Germany) at maximum speed 
for three minutes, supplemented with two glass beads 
per sample to facilitate tissue disruption. The total RNA 

Fig. 3  Recombination analysis of the canine distemper virus (OP209185): (A) Similarity Plot analysis of the complete genome sequences of 
OP209185 (Steppe polecat, Hungary, 2021) and its putative parents OP209186 (Steppe polecat, Hungary, 2018) and OP209187 (European polecat, 
Hungary, 2019). The OP209185 was used as the query. (B) Boot Scan analysis of OP209185 and its parent sequences. (C) Similarity Plot analysis of 
the H gene sequences of OP209185 and its putative parents. (D) Boot Scan analysis of OP209185 and its parent sequences in the H gene. A CDV 
isolate, HM046486 (Caspian lineage), was used as an outgroup in all analyses. The red vertical line represents the H gene segment region. The y-axis 
indicates the percentage of identity with a window size of 600 bp and a step size of 20 bp. The comparison was performed using 50% consensus 
sequences with 1000 bootstrap replicates
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was extracted using the Monarch Total RNA Miniprep 
Kit (NEB, USA) in full adherence to the manufacturer’s 
recommended guidance. The samples were screened 
with a CDV-specific real-time RT-PCR method [3] using 
OneStep RT-PCR Kit (Qiagen, Germany). RNA was 
added to each tube and the cycling was adjusted to one 
cycle of 50 °C for 30 min for the reverse transcription of 
RNA to cDNA, followed by one cycle at 95 °C for 15 min. 
The cDNA was amplified by PCR for 50 cycles, each cycle 
consisting of denaturation at 94  °C for20 sec, anneal-
ing at 46 °C for 30 s, extension at 72 °C for 30 s and final 
extension at 72 °C for 10 min. RT-PCRs were performed 
immediately following RNA extraction without freeze-
thawing the nucleic acid to avoid RNA degradation.

Nanopore sequencing and data analysis
The complete genome sequencing was performed with 
MinION Nanopore sequencing technology (Oxford 
Nanopore Technologies, UK). We used a previously 
published universal amplicon-based sequencing method 
designed for CDV [12, 13]. The detailed protocol and 
the primers are available at our laboratory protocols.io 
page [81]. In brief, the CDV RNA positive nucleic acids 
were used for cDNA preparation with Superscript IV 
Reverse Transcriptase (Invitrogen, USA) using random 
hexamers. Two sets of primers were used to generate 
overlapping genome fragments that differ in the length 
of amplicons (1000 bp, 2000 bp). These multiplex PCRs 
were conducted directly from the cDNA with the usage 
of Q5 Hot Start HF Polymerase (New England Biolabs, 
USA). For the cleanup step, we used AMPure XP beads 
(Beckman Coulter, USA), and the PCR products were 
end-prepped with NEBNext Ultra II End Repair/dA-Tail-
ing Module (New England Biolabs, USA). Barcodes from 
EXP-NBD196 (Nanopore Technologies, UK) were ligated 
to generate amplicons with NEBNext Ultra II Ligation 
Module (NEB, USA). The sequencing runs were per-
formed on a R9.4.1. (FLO-MIN106D) flow cell with the 
AMX-F motor protein from SQK-LSK110 kit (Nanopore 
Technologies, UK). Sequencing raw data was processed 
by regular methods for Oxford Nanopore sequencing. 
Base-calling and demultiplexing of the raw data was per-
formed with Guppy software (version 6.0.1.) using the 
super accurate base-calling model and default param-
eters with the “barcode_both_end” option. The gener-
ated reads were further processed, as 50 bases pairs were 
trimmed from both ends and the dataset was filtered to 
eliminate the short and chimeric sequence reads. Fol-
lowing the previously mentioned processes, all generated 
reads from a sample were mapped to the MN267060 ref-
erence sequence using Geneious Prime (version 1.6.0.). 
The preconsensus sequences were polished with Medaka 
(version 2022.1.1) to generate final consensus sequences.

Phylogenetic and recombinant analysis
Prior to the phylogenetic reconstruction, sequences of 
interest were retrieved from GenBank (NCBI, Bethesda, 
USA) and aligned with our obtained sequences in MUS-
CLE alignment webserver. Two datasets were used 
for phylogenetic tree analysis comprising 221 com-
plete genomes and 969 complete hemagglutinin gene 
sequences, respectively. Subsequently, the Maximum 
Likelihood phylogenetic tree was constructed under the 
General Time Reversible Model, Gamma Distributed 
with Invariant Sites (GTR + G + I) substitution model 
with best model selection in MEGA X (MEGA, Penn-
sylvania, USA) [82]. The clustering of the sequences was 
verified with and additional method, using the RAxML 
(Randomized Axelerated Maximum Likelihood) plugin 
for Geneious Prime® 2022.2.2 [83]. The resultant tree was 
edited in iTOL (iTOL, Heidelberg, Germany) [84]. Pho-
cine distemper virus (PDV) was used as an outgroup for 
all phylogenies.

The potential recombinant CDV genomes were tested 
through recombination analysis using similarity plot and 
bootscan analyses in SimPlot software package (version 
3.5.1.) [85]. The recombination analysis was modeled 
with Kimura 2-parameter distance model using a window 
size of 600 bp and step size of 20 bp in the case of com-
plete genomes and H gene sequences. To support our 
observation, we used a secondary recombination analy-
sis method with the DualBrothers plugin in Geneious 
Prime® 2022.2.2 [86].
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